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In this paper, we study the application of the concept of finite-time thermodynamics to first-order phase
transitions. As an example, we investigate the transition from the gaseous to the liquid state by modeling the
liquification of the gas in a finite time. In particular, we introduce, state, and solve an optimal control problem
in which we aim at achieving the gas-liquid first-order phase transition through supersaturation within a fixed
time in an optimal fashion, in the sense that the work required to supersaturate the gas, called excess work, is
minimized by controlling the appropriate thermodynamic parameters. The resulting set of coupled nonlinear
differential equations is then solved for three systems, nitrogen N2, oxygen O2, and water vapor H2O.
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I. INTRODUCTION

Phase transitions are well-known phenomena in many
area of physics, where the dynamics of complex systems
leads to the existence of several �meta�stable phases as a
function of characteristic parameters �1�. Typically, these
transitions occur for a particular set of values of the charac-
teristic parameters Ci, for which certain physical quantities
Qj of the two phases under consideration are equal. In ther-
modynamic systems, we often consider only one physical
parameter Q, which corresponds to the �free� energy of the
competing phases, while the Ci represent temperature, pres-
sure, etc. For a given temperature and pressure, the phase
with the lowest free energy is most likely to be present and is
thus considered to be thermodynamically stable. This follows
from the fact that classical thermodynamical processes are
assumed to take place infinitely slowly, and thus equilibrium
statistical mechanics can be applied to compute the probabil-
ity that a certain phase is present. However, it is well known
that, in real systems, where only a finite time is available for
the phase transition to take place, a given phase can often
persist for a considerable time even at temperatures and pres-
sures where it has become thermodynamically unstable. This
metastability of a phase is a common occurrence in cases of
first-order phase transitions, where a nucleation process is
necessary before a new phase is formed. Typical examples
are the condensation of a liquid from the gas phase below the
critical point, crystallization from the melt �where supercool-
ings of up to hundreds of degrees have been observed�, and
many among the temperature- or pressure-induced phase
transitions in crystalline solids �2�. The physical reason be-
hind this metastability is the existence of a slow dynamics,
possibly driven by rare fluctuations, for the rearrangement of
the individual atoms, spins, etc. Accelerating this dynamics
usually can be achieved by moving from the phase boundary
in parameter space deeper into the region of the new phase.
As a consequence, the transition in finite time takes place
under nonequilibrium conditions and dissipation occurs, re-
flected in, e.g., losses of availability or excess of entropy

production. Such effects are well known in the theory of
finite-time thermodynamics, where the consequences of run-
ning thermodynamic processes in finite time are being stud-
ied �3–7�. A question of particular interest is the derivation of
lower bounds on the entropy production using optimal con-
trol techniques, since the knowledge of such limits and the
precise schedule in thermodynamic parameters allows the
design of optimally energy-efficient processes. Examples in-
clude efficient design of heat exchangers �8,9�, distillation
columns �10�, and heat engines �11,12�; however, the issue of
completing a first-order phase transition in a finite time and
the associated question of how to drive the system in an
optimal way such that the work spent in doing so is minimal
does not seem to have been considered up to now.

Thus, in this work, we introduce, state, and solve the op-
timal control problem for achieving a first-order phase tran-
sition in an optimal fashion, in the sense that the excess work
required is minimized by controlling the appropriate thermo-
dynamic parameters. As a concrete example, we choose the
transition from the gaseous to the liquid state, with the ex-
cess work corresponding to the work required to supersatu-
rate the gas.

The focus of this work is on the application of the prin-
ciples of finite-time thermodynamics to first-order phase
transitions; thus we employ some simplifications in the de-
scription of the actual physical system, such as using classi-
cal nucleation theory when modeling the gas-liquid transi-
tion, that allow us to reduce the solution of the optimal
control problem to a set of coupled ordinary differential
equations that can be solved numerically.

II. MODEL

To mathematically formulate the problem of achieving a
first-order phase transition in a finite time in an optimal fash-
ion, we need a complete, clear, and simple description of a
nucleation process and subsequent cluster growth in which
the relevant physics is present but which nevertheless allows
an efficient solution. For this, we turn to the well-known
homogeneous classical nucleation theory �see Appendix A�,
which should be able to serve as a satisfactory basic descrip-
tion of the gas-liquid transition. Here, the supersaturated va-
por phase is supposed to behave as an ideal gas of monomers
without foreign seed particles, while the liquid phase appears
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via the growth of clusters by condensation of monomers. The
liquid phase is supposed to be incompressible, and it is as-
sumed that the clusters and the monomers have the same
temperature �13�. Using this assumption, it is possible to
obtain the steady state isothermal1 rate of formation of stable
particles of the new phase as a function of the bulk physical
properties of the material, the temperature, and the degree of
supersaturation of the system �13�. By assuming isothermal
conditions, classical nucleation theory ignores any of the
processes that could contribute to temperature differences
between the old and the new phases, in particular any energy
released or required by the phase transition. Following these
guidelines, we define a molecular transfer rate from the gas
to the liquid phase in which both a nucleation and a growth
term are present, and we write down the excess work rate
function, which is described by the �pg− pg

��dV work term
along the pressure path pg�t� of the system. In other words,
we want to investigate how we can push the system to over-
come its energy barrier and, therefore, to liquefy, in a specific
time interval, and how we can minimize the amount of work
involved, starting at standard conditions [pg

��Tboil� ,Tboil],
where Tboil is the boiling temperature of the system at the
pressure pg= pg

��Tboil�. For the sake of clarity, we make a
distinction between the pressure of the system as a state pa-
rameter and the applied pressure as the control we want to
optimize. Of course, applying the pressure to the system
along isotherms forces the system to adjust to the new con-
dition with a certain time lag. For simplicity, we shall assume
that such an adjustment is immediate.

Consider the total volume of the system as the sum of the
volumes of the gas and liquid phases, VT=Vg+Vl=ng�g
+nl�l, where ng,l and �g,l are the number of molecules and
the molecular volume of the corresponding phase. Supposing
constant molecular volume of the liquid �i.e., incompressibil-
ity of the liquid phase�, we have

dVT

dt
= ng

d�g

dt
+ ��l − �g�

dnl

dt
, �1�

since dnl /dt=−dng /dt by conservation of mass, nT=ng+nl
=const. Using �g=kT / pg, we now define the rate at which
mass is transferred from the gaseous phase to the liquid
phase as the sum of the rate at which nuclei are formed and
the rate at which these nuclei grow,

dnl

dt
= nl

cJss
c +

�4��1/3�3�l�2/3

�2�mkT
nl

2/3�pg − pg
����

0

t

Jss
c dt��1/3

,

�2�

with nl
c given by Eq. �A3�. On the right side, the first term is

the nucleation term, which accounts for the net increase in
the number of liquid droplets in the gas phase during the
transition. The second term is the average growth term of
clusters, which is essentially the difference between the for-
ward and backward rates of molecules entering and leaving
the clusters. Denoting the number of molecules in one cluster

as nl
1, the forward rate, i.e., the rate at which impinging mol-

ecules condense, is classically given, per cluster, by the prod-
uct of the surface area A�nl

1�= �4��1/3�3�l�2/3�nl
1�2/3, the im-

pingement rate of molecules on the cluster �= pg /�2�mkT,
and the condensation coefficient which we assume to be
unity �13,14�. The backward rate per cluster, on the other
hand, while also depending on the surface area and on the
condensation coefficient, takes into account the amount of
mass leaving the cluster by considering the Kelvin equation,
in which the partial pressure of the vapor is in equilibrium
with a liquid droplet of size nl

1. For simplicity, we assume
that no molecule leaves the droplet as long as pg� pg

� and,
therefore, the rate of molecules leaving the cluster can be
given by pg

� /�2�mkT. Finally, the integral term in Eq. �2�
takes into account the total number of critical clusters created
during the process. For simplicity, we do not keep track of
the growth of each cluster individually. Instead, we employ
an average value Nc=nl /nl

1. This does not allow the treat-
ment of coarsening processes; however, we note that such
processes usually proceed rather slowly, while we are inter-
ested in the finite-time behavior of the phase transition.

The excess work rate is given by

dWexc

dt
= − �pg − pg

��
dVT

dt

= �pg − pg
��	�nT − nl�

kT

pg
2

dpg

dt
+ � kT

pg
− �l�dnl

dt

 ,

�3�

where we have used Eqs. �1� and �2�. The excess work is the
work we need to perform to achieve the transition at super-
saturation, which is null if pg= pg

�, increases as a function of
pg / pg

�, and can be visualized by the shaded region in Fig. 1.
Indeed, supppose that the system is in the gas phase at tem-
perature T1, standard pressure pg

��T1�, and volume V1. If we
leave the system at these standard conditions, eventually a
fluctuation big enough to overcome the energy barrier will
allow liquification of the gas with no work done in the sense
of Eq. �3�. But, except for temperatures close to the critical
point, such an event will require essentially an infinite time.
Thus, in a finite-time regime, we need to assist the system to
change from the gaseous to the liquid phase by applying an
external pressure pa� pg

� along isotherm T1. This external
help requires an additional amount of work, which is related
just to the increment of the pressure from standard conditions
such that a nucleating process, and subsequent growth of the
clusters, can occur. Minimizing this excess work while mov-
ing the system from the gaseous to the liquid phase is
equivalent to the following optimal control problem in the
framework of finite-time thermodynamics and classical
nucleation theory.

Given fixed initial and final times t0 and tf, we aim at
achieving a complete first-order phase transition in an
optimal fashion along isotherms by controlling the applied
pressure pa�t� that will cause the system to go from the
gaseous to the liquid phase in a finite time obeying Eq. �2�
while minimizing the total excess work produced, i.e.,
�t0

tf �dWexc /dt�dt.

1For an extension of the classical homogeneous nucleation theory
to nonisothermal conditions, we refer to Ref. �22�.
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In the next section, we recast the physical problem in the
formalism of optimal control theory, and derive the set of
nonlinear differential equations and boundary conditions that
yield the optimal trajectory pa

��t�. The general mathematical
apparatus needed is outlined in Appendix B.

III. OPTIMAL CONTROL PROBLEM

A. Formulation as a calculus-of-variation problem

In the context of optimal control theory, the total excess
work corresponds to expression �B1� from Appendix B.
I(x̄�t� , ū�t�) corresponds to dWexc /dt in Eq. �3� and the
generalized coordinates and the generalized velocities
are given by x�t�= (x1�t� ,x2�t�)= (nl�t� , pg�t�)�R2 and ẋ�t�
= (ẋ1�t� , ẋ2�t��= �ṅl�t� , ṗg�t�)�R2, respectively. Moreover, the
control variable u�t�, in Appendix B, is the externally applied
pressure pa�t�. For the purpose of this analysis, we assume
that the delay of equilibration of the internal pressure pg to
the applied external pressure pa is essentially zero,2 i.e.,

pg�t� = pa�t� �4�

for all t� �t0 , tf�. In terms of an optimal control problem, we
need to define the admissible sets of state and control vari-
ables. Considering the general situation in which the initial

and final number of molecules in the liquid phase are
given by nl�t0�, not necessarly zero, and nl�tf�, not necessarly
nT, we choose the state variables to be given by the set
(nl�t� , pg�t�)�X�R2, with X= ��nl�t0� ,nl�tf��� �pg

� ,��
,
and the control variables to be given by the set
(pa�t� , ṗa�t�)�U�R2, with U= ��pg

� ,��� �−� ,��
.3 It is im-
portant to mention that the finite-time feature of our problem
will restrict further the set U to exclude any admissible pres-
sure path pa�t� which intersect the transition pressure pg

� for
any t� �t0 , tf�. Moreover, the applied pressure pa has to be
considered as both a state and a control variable, and the
optimal number of molecules migrated from the gas to the
liquid phase, nl

�, will not take values on the boundary of X,
except at the extreme points nl�t0� and nl�tf�, due to the
growth term in the ordinary differential equation �2�. It is
evident that we are seeking an optimal continuous change of
the pressure such that a complete transition occurs in a finite
time, and we also insist that the pressure rate ṗg�t� change
continuously for all t� �t0 , tf�. Based on this fact, we shall
derive the necessary condition for optimality.

B. Necessary conditions of the physical problem

In defining our cost functional, we omit the state con-
straint vector value function �B4�, since we can define such
constraints in a simpler form in this problem. Moreover, the
number of molecules is fixed at the fixed initial time t0 and
fixed final time tf, namely, nl�t0�=nl

0 and nl�tf�=nl
f. Thus,

considering that I�·�= �dWexc /dt��·� and �(pa�t0� , pa�tf�)
=Wexc(pa�t0� , pa�tf�), we can restate problem �B3� as

min��„pa�t0�,pa�tf�… + �
t0

tf

I„nl�t�,pa�t�, ṗa�t�,t…dt� , �5�

subject to

ṅl�t� = f„nl�t�,pa�t�,t… = nl
cJss

c +
�4��1/3�3�l�2/3

�2�mkT
nl

2/3�pa − pg
��

���
0

t

Jss
c dt��1/3

, �6�

ṗg�t� = ṗa�t� �7�

with nl�t0�=nl
0, nl�tf�=nl

f, pa�t�� �pg
� ,��, ṗa�t�� �−� ,��,

and with I and f continuous for all t� �t0 , tf� and continu-
ously differentiable for all t� �t0 , tf�, given the admissible
state and control region defined in the previous section. Now,
the cost functional we are going to consider is given by �see
�B6��,

2In general, we would also take into account the loss of availabil-
ity that is due to the fact that only a finite time is available for the
equilibration before pa changes again. Similarly, one would also
add finite-time dissipation terms due to the difficulty of keeping the
temperature constant during the process. However, we will neglect
such terms in our analysis, since they are expected to be relatively
small compared to the excess work in Eq. �3�.

3It has to be mentioned that, even though the sets of admissible
applied pressures and applied pressure rates we consider, namely,
pa�t�� �pg

� ,�� and ṗa�t�� �−� ,��, are in reality constrained by the
physical limitations of the experimental tools available, the pressure
and pressure rate values that can be obtained in a laboratory are so
much greater than the one physically admissible in our problem that
we should keep the pressure intervals as they are. In other words,
the boundaries given by experimental performance of laboratory
devices have no effect on our problem solutions.

FIG. 1. �Color� The shaded region represents the work, called
excess work, we need to perform to achieve a first-order phase
transition by supersaturating the gas at standard conditions
�pg

��Tboil� ,Tboil�, where Tboil is the boiling temperature of the sys-
tem. Here, Tboil is either T1 or T2 depending on the system.
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J = �„pa�t0�,pa�tf�… + �
t0

tf

�	1ṅl + 	2ṗa − H�dt , �8�

in which the Hamiltonian H is given by �see �B5��,

H„nl�t�,pa�t�, ṗa�t�,	1�t�,	2�t�,t…

= 	1f„nl�t�,pa�t�,t… + 	2ṗa − I„nl�t�,pa�t�, ṗa�t�,t… . �9�

We set the first variation of J to zero to obtain the necessary
conditions for the optimal applied pressure trajectory pa

��t�.
This yields, considering the cost in Eq. �8� and the fact that

nlf

=
nl0
=
tf =
t0=0,

ṅl
� =

�H�

�	1
=

�H̃�

�	1
, �10�

ṗa
� =

�H�

�	2
= ṗg

�, �11�

	̇1
� = −

�H�

�nl
= −

�H̃�

�nl
, �12�

	̇2
� =

d

dt
� �H�

� ṗa
� −

�H�

�pa
⇒

d

dt
� �H̃�

� ṗa
� −

�H̃�

�pa
= 0, �13�

where H�=H�nl
� , pa

� ,	1
� ,	2

� , t� and H̃�= H̃�nl
� , pa

� ,	1
� , t� is the

corresponding Routhian function. We also have the boundary
conditions on 	2,

	2
��t0� =

���

�pa�t0�
+

�H�

� ṗa

�t0� , �14�

	2
��tf� = −

���

�pa�tf�
+

�H�

� ṗa

�tf� . �15�

Considering the Hamiltonian in Eq. �9�, its partial derivative
with respect to ṗa is given by

�H

� ṗa

�t� = −
kT�nT − nl�t���pa�t� − pg

��
pa

2�t�
+ 	2�t� . �16�

Thus, by substituting Eq. �16� in Eqs. �14� and �15� and
considering the initial and final times t0 and tf, the boundary
conditions in Eqs. �14� and �15� simplify to

���

�pa�t0�
=

kT�nT − nl
0��pa

��t0� − pg
��

�pa
��2�t0�

, �17�

���

�pa�tf�
= −

kT�nT − nl
f��pa

��tf� − pg
��

�pa
��2�tf�

. �18�

These derivatives can be integrated to yield the initial and
final costs associated with an initial and final pressure differ-
ent from pg

�. In the case of a full first-order phase transition,
the final cost will not depend on the final pressure since the
total number of molecules of the system is transferred to the
liquid phase, nl

f =nT. In this case, we have no final cost since
the process is completely done and the final pressure value at
� is irrelevant as far as the excess work is concerned. How-
ever, we would like the initial applied pressure to be equal to
pg

�. By integrating Eq. �17�, we get

��
„pa�t0�… = kT�nT − nl

0��ln
pa

��t0�
pg

� −
�pa

��t0� − pg
��

pa
��t0�

� . �19�

TABLE I. Thermodynamic parameters for nitrogen, oxygen, and water vapor.

Parameters �units� N2 O2 H2O

Molar mass M �kg/mole� 0.028013 �15� 0.032 0.01801539

Molecular mass m �kg� 4.65175�10−26 5.31372�10−26 �16� 2.99147�10−26

Boiling point at pg
�, Tboil �K� 77.35 �15� 90.15 �16� 373.15 �17�

Density � �kg /m3� 806.082 �15� 1142 958.356 �18�
Molecular volume vl �m3� 5.77081�10−29 4.65299�10−29 �16� 3.12146�10−29

Surface tension at Tboil, 
 �N/m� 0.00885 �19� 0.0131 �16� 0.0606 �18�

0.007 0.0075 0.008 0.0085 0.009
t

0

0.2

0.4

0.6

0.8

1

nl

0.008 0.0085 0.009 0.0095 0.01
t

500000

1�106

1.5�106

2�106

2.5�106

nl

(b)

(a)

FIG. 2. Number of molecules nl of nitrogen in the liquid phase
due to nucleation in the time interval 0� t� t0 with t0=0.01 s.
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These considerations have some practical implications re-
garding the implementation of the algorithm presented in the
next section.

C. Algorithm

Due to the complexity of the Routhian function, the algo-
rithm is composed of the following steps.

Step 1. Consider expression �13�, ��d /dt���H̃ /�ṗa�
−�H̃ /�pa��nl

� , pa
� , ṅl

� ,	1
� , t�=0, and solve it for 	1

�

=	1�nl
� , pa

� , ṅl
� , t�. Find 	̇1

�= 	̇1�nl
� , pa

� , ṅl
� , ṗa

� , n̈l
� , t�.

Step 2. Use expression �10� and its derivative with respect

to t and substitute them in both 	1
� and 	̇1

�. Since ṅl
�

= ṅl�nl
� , pa

� , t�, the adjoint variable and its derivative become

	1
�=	1�nl

� , pa
� , t� and 	̇1

�= 	̇1�nl
� , pa

� , ṗa
� , t�.

Step 3. Substitute 	1
� and 	̇1

� from step 2 into expression

�12�, �	̇1+�H̃ /�nl��nl
� , pa

� , ṗa
� ,	1

� , 	̇1
� , t�=0, and solve for ṗa

�.
We obtain ṗa

�= ṗa�nl
� , pa

� , t�.
Solving the optimal control problem has thus been re-

duced to numerically solving the following system of differ-
ential equations:

ṗa
� = ṗa�nl

�,pa
�,t�, ṅl

� = ṅl�nl
�,pa

�,t� =
�H̃�

�	1
,

pa
��t0� = pa

0, nl
��t0� = nl

0, �20�

in which the last term is obtained by integrating the nucle-
ation term of Eq. �2�,

nl
��t0� = �

0

t0

nl
cJss

c dt , �21�

after inserting the linear function pa�t�= ��pa
��t0�− pg

�� / t0
t
+ pg

� and considering nl
��0�=0.

The final optimal state, nl
����=nT at t=�, is embedded in

the model. We shall now implement the algorithm by first
fixing the final time tf =�, and then choosing the initial pres-
sure pa�t0� such that nl���=nT and Wexc is a minimum. The
initial pressure pa�t0� is the tool we necessarily need to com-
plete the transition process in a fixed time and to minimize
the excess work. It is evident that smaller values of tf require

TABLE II. The number of critical clusters, the optimal number
of molecules both in the liquid phase and per critical cluster, and the
critical size at time t0=0.01 for nitrogen N2.

� Nc�t0� nl
��t0� nl

��t0� /Nc�t0� nl
c�t0�

1 5.01897�108 6.11503�1010 122 118

10 1.57272�107 2.11668�109 135 130

102 496830 7.34058�107 148 144

103 15782 2.54588�106 161 157

104 499 87563 175 171

105 16 3006 190 185

TABLE III. The initial pressure pa
��t0�, the final pressure pa

����,
and the total excess work performed within time � for nitrogen N2.

� �s� pa
��t0� �Pa� pa

���� �Pa� �Wexc �J�

1 228415 101337 3.233

10 222330 101334 3.221

102 216955 101333 3.205

103 212165 101333 3.194

104 207855 101333 3.187

105 203960 101333 3.180

0.01 0.0120.0140.0160.018 0.02
t

101400

101600

101800

102000

102200

pa
�

0 200 400 600 800 1000
t

101334

101334

101335

101335

101336

101336

pa
�

500 600 700 800 900 1000
t

101333

101333

101333

101333

101333

pa
�

(b)

(a)

(c)

FIG. 3. Optimal applied pressure pa
��t� with final time �

=103 s for nitrogen N2.

0 0.2 0.4 0.6 0.8 1
t'

101335

101338

101340

101343

101345

101348

101350

pa
�

FIG. 4. �Color� Optimal applied pressures pa
��t�� vs t� in units of

pascals for nitrogen N2. �=1, orange; 10, light green; 102, green;
103, blue; 104, purple; 105, red.
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higher initial pressures. But, due to experimental motivation,
we would like to start the transition process from the gas to
the liquid phase at the standard pressure pg

�. It turns out that
this apparent drawback can be solved in a natural way as part
of the numerical integration of the differential equations. In-
deed, we cannot really start our numerical calculations with
an initial time t0=0 due to technical computational difficul-
ties. So our strategy is to set the initial time t0�0 �e.g., t0
=0.01�, assume that in the interval 0� t� t0 the pressure is
linearly increased from pg

� to pa�t0�, apply the algorithm to
find the optimal solution �nl

� , pa
�� in the interval t0� t��, and

include the initial cost into the minimum total excess work
cost obtained along the optimal trajectories. At this point, the
pressure has reached some optimal value, i.e., pa

����= pa
�, and

all the molecules available in the system are in the liquid
phase. We can now reduce the applied pressure down to pg

�

in any fashion, since no gas phase remains and, thus, Wexc
does not change.

Let us now apply our formalism to three concrete ex-
amples, the liquification of three gases: the two main com-
ponents of the atmosphere by volume, nitrogen and oxygen,
which, together, comprise most of the dry atmosphere, and
water vapor.

IV. APPLICATIONS

In the following three examples, we show the optimal
trajectories of the applied pressure pa

��t� and of the number of
molecules in the liquid phase nl

��t�, for six different fixed
final times �=105 ,104 ,103 ,102 ,10,1, in seconds. We shall
begin with nitrogen N2, then present results for oxygen O2,
and finally water vapor H2O.

Example 1: Nitrogen �N2�. Consider the case of one mole
of nitrogen at the boiling temperature T=Tboil=77.355 K at
pg= pg

�=1 atm with the corresponding parameters given in
Table I. We shall discuss the case of the first-order phase
transition to be completed within the time �=103 as an ex-
ample in detail; due to the general similarity of the trajecto-
ries for the remaining �’s, even though different values of
pressure and excess work are obtained. We shall then con-
sider all six cases together and discuss their features.

Given a fixed �=103 and initial time t= t0=0.01 s, the
optimal initial applied pressure is pa

��t0��212165 Pa, with
an initial number of molecules already transferred to the liq-
uid phase of nl

��t0��2.55�106. Indeed, during the linear
path of the applied pressure in the interval 0� t� t0, the
number of molecules transferred to the liquid phase is very
small at first �see Fig. 2�a��, but picks up extremely quickly
close to t0 �Fig. 2�b��.

We recall that the linear applied pressure behavior is an
assumption reasonable to make to reach the initial optimal
pressure value pa

��t0�, the starting point of the optimal pres-
sure trajectory.4 It is interesting to note that, for the �=103

case under investigation, the number of critical clusters cre-
ated in the time interval 0� t� t0 is about 15 782 �see Table
II�. This feature of a big growth in the number of critical
clusters in the first part of the total pressure path with essen-
tially no contribution along the subsequent optimal trajectory
is common for all times �. Once we have reached the optimal
initial applied pressure pa

��t0�, the pressure path drops down
extremely fast within a fraction of a second �see Fig. 3�a��,
and then follows the trajectory shown in Fig. 3�b�, which
gives a better idea of its very slowly decreasing behavior
after the initial drop. Figure 3�c�, on the other hand, shows

4Of course, the dependence of the results on the choice of t0 will
be investigated in the discussion.

0 0.2 0.4 0.6 0.8 1
t'

0

1�1023
2�1023
3�1023
4�1023
5�1023
6�1023

nl
�
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the behavior of pa
� at the end of the transition process, reach-

ing pa
��103�=101 333 Pa. For the interval �t0 ,103�, we find a

negative excess work due to the rapidly decreasing optimal
pressure path Wexc�103�−Wexc�t0��−136.094 J, to which we
need to add the initial cost Wexc(pa

��t0�)�139.288 J. In other
words, while in the first stage of the process we do work to
supersaturate the gas up to pa

��t0�, in the second stage we
regain most of the work spent. Thus, the total minimum ex-
cess work obtained along the entire process is Wexc
�3.194 J. Corresponding results are obtained for the other
five values of � �see Table III�. By rescaling the six trajecto-
ries in such a way that the applied pressure is a function of
t�= t /�, we show in Fig. 4 all the different pressure paths. In
particular, we see that the optimal pressure trajectories shift
downward as the final time � increases. At this point, it is
worth mentioning that the initial optimal pressure decreases
slightly with increasing �.

Along the optimal applied pressure paths pa
��t�� for all six

values of �, the optimal trajectories nl
� are also very similar

throughout the time interval, Fig. 5, except at the beginning.
To visualize this point in a clearer way, let us consider the
plot log10nl

� vs t�, in which the six trajectories start at differ-
ent values t� due to the rescaling �see Fig. 6�a��, and merge
rather quickly as is shown in Fig. 6�b�.

The number of molecules migrated to the liquid phase at
t= t0 is given in Table II, and we represent them as the
smaller dots in Fig. 7.

Next, we estimate the number of molecules per critical
cluster due only to the nucleation process that essentially
takes place within the time interval �0, t0�. To do so, we
consider the number of clusters created and the number of
molecules already in the liquid phase within t= t0 given in
Table II.5 In all cases, nl

��t0��nT�6�1023. Results are
given in Table II.

Most of the molecule transfer happens rather quickly via
creation of new clusters of critical size �see Table II�, and
then tends to stabilize at a much slower rate where growth of
the individual clusters is dominant. We show the relation

between the number of critical clusters with respect to � in
Fig. 8.

Table III shows, for given �, the initial pressure pa
��t0�, the

final pressure pa
����, and the total excess work performed to

achieve the first-order phase transition within time �. The
difference in initial pressures between the smallest and the
biggest values of � we have considered, �=1 and 105 s, is
around 0.24 atm with a difference in total excess work

Wexc
1 −Wexc

105
=0.053 J.

It is interesting to consider a log-log plot of the excess
work Wexc vs the available time � �see Fig. 9�. The six points
in Fig. 9 lie on essentially a straight line, whose slope is
s�−0.001 436.

In Fig. 10, we finally show the initial optimal pressure
value obtained vs the available time �.

Example 2: Oxygen �O2�. Consider the case of one mole
of oxygen at the boiling temperature T=Tboil=90.15 K at
pg= pg

�=1 atm with the corresponding parameters given in
Table I. Considering again the case �=103, the optimal initial
pressure found is pa

��t0��238 365 Pa with an initial number
of molecules transferred within t= t0 of about nl

��t0��2.87
�106. Again, only a small growth of nl is observed at first,
followed by a rapid increase to the value given above at t
= t0. Moreover, the optimal pressure path follows the behav-
ior plotted in Fig. 3, even though the pressure values at each
instant of time are higher than for nitrogen. The final optimal
pressure is given by pa

��103��101 333 Pa, with an excess
work Wexc�103�−Wexc�t0��−204.893 J, to which we need to
add the initial cost Wexc(pa

��t0�)�210.255 J. Therefore, the
total minimum excess work obtained along the entire path
for �=103 is Wexc�5.362 J. Detailed results for the oxygen
case are given in Table V below. Figure 11 shows all the
pressure paths as functions of t�= t /�.

5Note that the reason why the critical size nl
c at t= t0 in Table II

has lower values than the number of molecules per cluster given by
the ratio nl

* /Nc is due to the fact that nl
c is evaluated exactly at the

initial optimal pressure pa
* at t0, Eq. �A3�, while the ratio is an

average along the linear path �pg
� , pa

*�.
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Similarly, the time evolution of nl
��t�, the number of mol-

ecules of oxygen transferred to the liquid phase, shows the
same behavior as in the case of nitrogen. The number of
molecules migrated to the liquid phase at t= t0 is given in
Table IV. Again, both nl

��t0� and Nc�t0� follow approximately
a power law as a function of �, nl

��t0���−1.46 and Nc��−1.5.
As is evident from Table IV, within a very small time frame
a considerable amount of molecules migrates to the liquid
phase due to nucleation.

Table V shows for given � the following quantities: the
initial pressure pa

��t0�, the final pressure pa
����, and the total

excess work needed to achieve the first-order phase transition
within time �. The difference in initial pressures between the
smallest and the biggest values of � we have considered, �
=1 and 105 s, is bigger than for the nitrogen case �about
0.32 atm�, with a difference in total excess work Wexc

1

−Wexc
105

=0.097 J. When we consider the relation between the
excess work Wexc and the final time � given in Fig. 12, we
note that, in the case of oxygen, the slope of the line con-
necting the six points in Fig. 12 is essentially identical to the
nitrogen one, namely, s�−0.001 566.

Finally, the initial optimal pressure value as function of
the available time � also exhibits a power law given by
pa

��t0���−0.0114.
Example 3: Water vapor �H2O�. For the case of the first-

order phase transition of one mole of water vapor at the
boiling temperature T=Tboil=373.15 K at pg= pg

�=1 atm to
the liquid phase within the time �=103 s �the corresponding
parameters are given in Table I�, we find an optimal initial
pressure pa

��t0��202 335 Pa, with an initial number of mol-
ecules given by nl

��t0��1.23�107. The final optimal pres-
sure is given by pa

��103��101 333 Pa, with an excess work

Wexc�103�−Wexc�t0��−561.389 J, to which we need to add
the initial cost Wexc(pa

��t0�)�596.714 J. Thus, the total mini-
mum excess work obtained along the optimal solution
�nl

� , pa
�� is Wexc�35.325 J.

Again, by rescaling the six trajectories in such a way that
the applied pressure is a function of t�= t /�, we find that all
the pressure paths are very similar �see Fig. 13�.

The functions nl
� for all the six times � are also again very

similar throughout the time interval except at the very begin-
ning. The number of molecules transferred to the liquid
phase at t= t0 is given in Table VI, and we again find a
power-law behavior for nl

��t0���−1.46, nc�t0���0.04, and Nc

��−1.5.
In Table VII, we list for a given � the initial pressure

pa
��t0�, the final pressure pa

����, and the total excess work
done to achieve the first-order phase transition within time �.
The difference in initial pressures between the smallest and
the biggest values of � we have considered, �=1 and 105 s,
is about 0.23 atm, with a relatively big difference in total

excess work Wexc
1 −Wexc

105
=0.836 J, compared to N2 and O2.

In Fig. 14, we show the log-log plot of the excess work
Wexc vs the time � with the slope of the line connecting the
points given by s�−0.002 046. This is quite similar to the
value found for nitrogen and oxygen.

Finally, the initial optimal pressure value obtained with
respect to the available time � exhibits a power-law depen-
dence pa

��t0���−0.0096.

V. DISCUSSION

A. Aspects of the gas-liquid phase transition

The three examples we have investigated present similari-
ties and differences that are worth discussing. We have no-

TABLE V. The initial pressure pa
��t0�, the final pressure pa

����,
and the total excess work performed within time � for oxygen O2.

� �s� pa
��t0� �Pa� pa

���� �Pa� �Wexc �J�

1 259730 101338 5.430

10 251695 101335 5.407

102 244640 101333 5.380

103 238365 101333 5.362

104 232750 101333 5.346

105 227685 101333 5.333

TABLE IV. The number of critical clusters, the optimal number
of molecules both in the liquid phase and per critical cluster, and the
critical size at time t0=0.01 for oxygen O2.

� Nc�t0� nl
��t0� nl

��t0� /Nc�t0� nl
c�t0�

1 6.58868�108 6.88593�1010 104 101

10 2.0628�107 2.38264�109 115 112

102 654592 8.30286�107 127 124

103 20734 2.87275�106 139 135

104 658 99161 151 147

105 21 3398 163 159
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FIG. 11. �Color� Optimal applied pressures pa
��t�� vs t� in pas-

cals for oxygen O2. For notation see Fig. 4.
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FIG. 12. log10 Wexc vs log10 � for oxygen O2. The slope is
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ticed throughout the previous section how the behaviors of
the optimal applied pressure paths, pa

��t�, in the time interval
�t0 ,��, are similar within the same system for different �’s
�see Figs. 4, 11, and 13�, and for the same � for different
systems �see Fig. 15�. This is due to the fact that, after a first
increase in pressure with corresponding excess work spent
and molecules transferred to the liquid phase along a linear
trajectory, there is a relaxation of the applied pressure needed
to minimize the excess work along the optimal path.

The power law relating the initial applied pressure pa
��t0�

for the three systems is given in Table VIII and is shown in
Fig. 16�a�. It is evident how the initial optimal pressure pa

��t0�
decreases with increasing � for the three systems. The actual
value of pa

��t0� is due to the complicated interplay of surface
tension, boiling temperature, and molecular volume in Eqs.
�A3� and �A4�. We find that for T=Tboil �pg

�=1 atm� the
oxygen system requires higher pressure values at T=T0, fol-
lowed by nitrogen and water vapor, but no simple formula
appears to be available to predict this sequence.

For the initial time interval �0, t0� where the very rapid
initial increase in pressure takes place, we recall that the
applied pressure path is identical for all situations, since we
have assumed a linear growth from the transition pressure pg

�

to pa
��t0�. It is interesting to note that, along this first part of

the pressure trajectory, the number of molecules transferred
to the liquid phase due to nucleation is very similar for the
three systems �see Fig. 16�b��. Specifically, it is slightly
greater for water vapor followed by oxygen and nitrogen.
This behavior is due to lower pressure values at t0 �see Fig.
16�a��, which imply higher critical sizes �see Fig. 17�a��, and
to a higher number of critical clusters created within 0� t
� t0 �see Fig. 17�b��. The power laws for nl

��t0�, nl
c�t0�, and

Nc�t0� are given in Table VIII, exibiting very similar behav-
ior. Regarding the relation between the excess work Wexc as
the energy spent in supersaturating the system and the time �
available, we also observe a power law, given in Table VIII.
It is found that water vapor requires a much greater amount
of excess work to supersaturate the gas compared to oxygen
and nitrogen, even though the optimal pressure path for wa-
ter vapor has lower values than the other two systems. This
fact implies that the change in volume throughout the phase
transition has to be greater for water vapor than for the other
two gases. Indeed, when we analyze Eq. �3� we notice how
higher temperature values, on the one hand, and lower pres-
sure values, on the other, determine the volume change
throughout the process, with a pressure rate and molecule
transfer rate essentially similar for the three systems at given
�. Our results strongly suggest that systems with higher �op-
timal� pressure and lower temperature values will probably
require the least amount of excess work to achieve a change
of phase. Another important technical point that needs to be
addressed is the relevance of the choice of the initial time t0
and of the choice of a linear increase of the applied pressure
in the time interval �0, t0� as far as the excess work is con-
cerned. We find for all three examples that the choice of t0
and the behavior of pa

��t� in �0, t0� are essentially irrelevant
as long as we do not force the system to remain for a long
time at the peak value pa

��t0�—in this case, the excess work
increases considerably and pa

��t� is clearly no longer an op-
timal path. For simplicity we shall present the results for
only one instance. Supposing we have �=103 s available for
the gas-liquid phase transition of nitrogen N2, let us set t0
=0.0001, 0.005, 0.02 s besides the already investigated
case of t0=0.01 s. In Table IX, it is shown that the total
excess work spent along the entire trajectory within the timeTABLE VI. The number of critical clusters, the optimal number

of molecules both in the liquid phase and per critical cluster, and the
critical size at time t0=0.01 for water vapor H2O.

� Nc�t0� nl
��t0� nl

��t0� /Nc�t0� nl
c�t0�

1 2.37112�109 2.91248�1011 123 119

10 7.42602�107 1.01291�1010 136 132

102 2.35108�106 3.5365�108 150 146

103 74522 1.22897�107 165 161

104 2361 424752 180 175

105 75 14614 195 191

TABLE VII. The initial pressure pa
��t0�, the final pressure pa

����,
and the total excess work performed within time � for water vapor
H2O.

� �s� pa
��t0� �Pa� pa

���� �Pa� �Wexc �J�

1 217600 101339 35.90

10 211860 101335 35.684

102 206817 101334 35.480

103 202335 101333 35.325

104 198320 101333 35.190

105 194700 101333 35.064
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FIG. 13. �Color� Optimal applied pressures pa
��t�� vs t� for water

vapor H2O. For notation see Fig. 4.
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FIG. 14. log10 Wexc vs log10 � for water vapor H2O. The slope is
s�−0.002 046.
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interval �0,�� is essentially invariant with respect to the ini-
tial time chosen t0. The reason is that the minimal increase of
excess work along the optimal pressure path pa

� as t0 in-
creases is counterbalanced by a decrease in the initial cost
Wexc(pa

��t0�).
It is important to stress that this work represents a first

approach in analyzing a first-order phase transition in a
closed system using methods and objectives from finite-time
thermodynamics. Thus, the choice of classical nucleation
theory as the main framework for the creation and growth of
clusters, and the consideration of only critical clusters, have
to be seen as a first attempt to put together different fields
such as nucleation theory, finite-time thermodynamics, and
optimal control theory. Nevertheless, the authors are aware

that the kinetics of nucleation is a multistage process in
which the evolution of clusters in cluster size space is domi-
nated by different factors depending on the size. Indeed, the
evolution of a cluster of size greater than nl

c+
nl
c is domi-
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FIG. 15. Optimal applied pressure paths pa
��t� for oxygen O2 �dotted line�, nitrogen N2 �dashed line�, and water vapor H2O �full line� with

different final times �.

TABLE VIII. Power laws of nl
��t0�, nl

c�t0�, Nl
c, pa

��t0�, and Wexc

as a function of � for nitrogen, oxygen, and water vapor.

Nitrogen Oxygen Water vapor

nl
��t0� 6.11�1010�−1.46 6.88�1010�−1.46 2.91�1011�−1.46

nl
c�t0� 118�0.04 101�0.04 119�0.04

Nl
c 5.02�108�−1.5 6.59�108�−1.5 2.37�109�−1.5

pa
��t0� 228415�−0.0098 259730�−0.0114 217600�−0.0096

Wexc 3.233�−0.001436 5.43�−0.001566 35.9�−0.002046
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FIG. 16. �a�,�b� Power laws as function of � for pa
��t0� and nl

��t0�
as listed in Table VIII. For notation see Fig. 15.
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nated by the deterministic growth term in the Frenkel-
Zeldovich equation, and not by a diffusionlike process as in
the interval in cluster size space �nl

c−
nl
c ,nl

c+
nl
c�, or by a

stochastic process as below nl
c−
nl

c �20,21�. Clearly, any
model can be improved, and it is our goal to extend our
approach to the nonisothermal case in which creation and
growth of clusters of different sizes are considered and in
which non-steady-state effects in the intial stage of the nucle-
ation process are introduced �20,21�. Moreover, in our work
we consider closed systems which undergo a change in vol-
ume during the phase transition. This implies that, as mol-
ecules condense into clusters of critical sizes and vapor con-
sumption during the process is achieved, we still retain
quasi-steady-state conditions due to the decrease in volume
of the system. Such a picture is different from the classical
Szilard model �20,21� which deals with systems in which the
nuclei reaching supercritical size are removed from the sys-
tem and reintroduced as monomers so as to keep a certain
fixed degree of supersaturation.

The results obtained in this paper could be extremely use-
ful, in our opinion, for applied and experimental work, and
further studies on controlling first-order gas-liquid phase
transitions in a finite time. One needs to keep in mind, how-
ever, that in the homogeneous nucleation theory the vapor
phase is supposed to behave as an ideal gas and therefore the
excess work values obtained in this paper might be consid-

ered as upper bounds for real systems. These bounds have to
be attributed to the fact that in real systems attractive forces
are present among the molecules, facilitating the condensa-
tion of molecules to the clusters and, thus, requiring less
work to supersaturate the gas and to obtain the phase transi-
tion. Furthermore, one also needs to take into account the
simplifications of avoiding evaporation of clusters through-
out the process and avoiding coarsening behaviors when
judging the quantitative accuracy of the results obtained with
respect to the excess work during the phase transition in real
applications. We are going to investigate this issue in future
work and compare with our present results; however the
technical difficulties in numerical computations are quite
large. Similarly, the issue of heat flux between the clusters of
the new phase and the old phase and the question of internal
relaxations to equilibrium upon changes of the control pa-
rameters could also be addressed in future work. If we look
at our work as a starting point in studying the general gas-
liquid first-order phase transition in the context of finite-time
thermodynamics and optimal control theory, a first step in the
direction of a more complete study might be to consider a
nonisothermal homogeneous nucleation reaction combined
with a backward molecular transfer rate for a gas-liquid tran-
sition �13,22�. In this case, the change in energy upon con-
densation, �H=Hvap−Hliq, is always positive, but we note
that it might have either sign in, e.g., solid-solid phase tran-
sitions. Therefore, the change in energy due to the gain or
loss of a monomer from a cluster is given by E=�H−W,
where W is the work needed to increase the area of the in-
terface �22�.

B. Applicability to general first-order phase transitions

To what extent is the approach we have presented for the
example of the gas-liquid transition applicable to a general
first-order phase transition? Central elements of our analysis
were a nucleation rate, a growth rate, an excess work rate,
the set of state and control parameters, and finally the opti-
mal control problem. Quite generally, a first-order phase
transition often begins with a nucleation process and subse-
quent growth of the size of the nuclei with time, and, at the
end of the process, a new phase is formed. Assuming spheri-
cal nuclei of radius r �or some other size parameter�, the total
variation of the Gibbs free energy �G is classically given by

�G = �H − T�S , �22�

where �H=Nr�Gnucl
r is the enthalpy associated with the for-

mation through nucleation of clusters of radius r. �Gnucl
r is

the Gibbs energy associated with the formation of a cluster
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FIG. 17. �a�,�b� Power laws as function of � for nl
c�t0� and Nc as

listed in Table VIII. For notation see Fig. 15.

TABLE IX. The initial pressure pa
�, the critical size nc, the number of critical clusters Nc, and the excess

work �Wexc with �=103 s for the gas-liquid phase transition of nitrogen N2 for different values of t0.

t0 pa
��t0� nc�t0� Nc�t0� Wexc(pa

��t0�) �Wexc �t0� t��� �Wexc �0� t���

0.0001 218675 140 15693 149.581 −146.375 3.206

0.005 213085 155 15770 140.745 −137.549 3.196

0.01 212165 157 15782 139.288 −136.094 3.194

0.02 211265 160 15801 137.863 −134.669 3.194
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of radius r, which includes a term corresponding to the pas-
sage of molecules from one phase to the other and a term
corresponding to the creation of an interface between the
cluster of the new phase and the initial phase �1�. Moreover,
�S is the variation of the entropy associated with the forma-
tion of Nr nuclei of radius r in the parent phase. Thus, re-
writing the total variation of the Gibbs energy as �G
=Nr�Gnucl

r −T�S, the value of Nr corresponding to equilib-
rium satisfies the relation

��G

�Nr = 0. �23�

The nucleation rate is, in general, defined by the relation,

J =
dN

dt
= bcNs

0Nc, �24�

where N�t� is the number of nuclei formed in the system at
time t, bc is the rate of collision of molecules with the critical
clusters, Nc is the number of nuclei of critical size rc, and Ns

0

is the number of molecules on the surface of a nucleus �1�.
Of course, depending on the type of phase transition, an ap-
propriately modified model describing the rate of the state
parameters involved in the problem has to be defined. If such
a model needs to address a transition between different
physical phases, e.g., gas-liquid, liquid-solid, paramagnetic-
ferromagnetic, etc., then both a nucleation and a growth term
have to be present, completely analogous to our approach.
Similarly, we are confident that our approach to optimizing a
gas-liquid first-order phase transition in the context of finite-
time thermodynamics could be extended to heterogeneous
nucleation reactions occurring on foreign surfaces in a super-
saturated vapor, possibly with the inclusion of a backward
molecule transfer rate. Here, a first step could consist of con-
sidering an isothermal heterogeneous nucleation process, still
in the gas-liquid regime, where the surface-absorbed mono-
mers have the same temperature and chemical potential as
the monomers in the parent phase.

VI. SUMMARY

In this paper, we have studied a first-order phase transition
in the context of finite-time thermodynamics and optimal
control theory, using the gas-liquid transition as an example.
We modeled the molecular transfer from the gas to the liquid
phase, within the context of classical homogenoeus nucle-
ation theory, and set up and solved the optimal control prob-
lem such that a phase transition of one mole of gas was
achieved in a finite time through supersaturation while the
work of supersaturating the gas was minimized. Finally, we
applied our results to three different gases: nitrogen N2, oxy-
gen O2, and water vapor H2O.

APPENDIX A

1. Theory of classical homogeneous nucleation

Starting from the work of Volmer and Weber �23–25�,
Becker and Döring �26�, and Zeldovich �27�, the classical
nucleation theory is based on equilibrium statistical mechan-

ics and unimolecular reaction kinetics. By assuming a spheri-
cal shape of the clusters of radius r, incompressibility of the
liquid phase, and ideal behavior of the gaseous phase, and by
considering the number of molecules n in a single spherical
droplet given by n= �4� /3�l�r3, the reversible work of clus-
ter formation �W is given by �13�

�Wn = − nkT ln S + 4�
�3�l

4�
�2/3

n2/3, �A1�

where �l is the volume of a molecule in the droplet, k is the
Boltzmann constant, T is the fixed system temperature, and
S= pg / pg

� is the degree of supersaturation, with pg
� being the

transition pressure at the given temperature T in thermody-
namical equilibrium. The work of cluster formation takes a
maximum value

�Wnc =
16��l

2
3

3k2T2�ln S�2 �A2�

at n=nc given by

nc =
32��l

2
3

3k3T3�ln S�3 . �A3�

The classical rate of nucleation Jss
c is defined as the number

of clusters of critical size nc per unit volume per unit time,
and has been derived by Becker and Döring �26� and by
Zeldovich �27�:

dNc

dt
= Jss

c = ZbcNeq
c , �A4�

where Nc is the number of clusters of critical size, Neq
c

= �pg /kT�exp�−�Wnc /kT� is the equilibrium number of clus-
ters of critical size per unit volume of the gas, Z

=��−�1 /2�kT���2�Wn /�n2�n=nc�= �kT�ln S�2 /8��l
��kT /


is the Zeldovich factor, and bc= pgAnc /�2�mkT is the fre-
quency of capture of a monomer by a cluster of critical size.
The surface area of the critical droplet is given by Anc

= �4��1/3�3�l�2/3�nc�2/3, and the mass of a molecule is indi-
cated by m. We are assuming that the condensation coeffi-
cient is unity �13�.

Considering all these factors and that ng=nT−nl, we can
write the steady-state nucleation rate of the gas as

Jss
c =� 2


�m
�l� pg

kT
��nT − nl�e−16��l

2
3/3k3T3�ln S�2
. �A5�

APPENDIX B

For a general overview of the calculus of variation and
optimal control theory we refer to Refs. �28–30�. The typical
problem in optimal control consists in finding a continuously
differentiable function ū�t�, t0� t� tf, to minimize �28�

�
t0

tf

I„x̄�t�,ū�t�,t…dt �B1�

subject to conditions on the state and costate variables
x̄�t��X�Rn and ū�t��U�Rm:

SANTORO, SCHÖN, AND JANSEN PHYSICAL REVIEW E 76, 061120 �2007�

061120-12



ẋ�t� = f„x̄�t�,ū�t�,t…, x̄�t0� = x̄0. �B2�

As long as the optimal solution (x̄��t� , ū��t�) is in the interior
of the admissible sets �X ,U�, with continuous controls every-
where in �t0 , tf�, variational methods can be used to obtain
the necessary conditions for optimality �28–30� by minimiz-
ing the expression

�„x̄�t0�,t0, x̄�tf�,tf… + �
t0

tf

I„x̄�t�,ū�t�,t…dt , �B3�

where ��·��R is the initial or terminal cost function subject
to the state vector’s boundary conditions,

�„x̄�t0�,t0, x̄�tf�,tf… = 0, �B4�

where ��·��Rk for some k�R. Introducing an auxiliary

vector of costate variables �̄�t��Rn leads to a Hamiltonian
function H,

H„x̄�t�,ū�t�,�̄�t�,t… = �̄Tf̄„x̄�t�,ū�t�,t… − I„x̄�t�,ū�t�,t… .

�B5�

The general cost functional to be minimized is then given
by:

J = �„x̄�t0�,t0, x̄�tf�,tf… + �T�„x̄�t0�,t0, x̄�tf�,tf…

+ �
t0

tf

��̄T�t�ẋ�t� − H„x̄�t�,ū�t�,�̄�t�,t…�dt , �B6�

where � is a k-vector of Lagrange multipliers.
The optimal control problem discussed in this work cor-

responds to the special case in which some state variables are
identified as control variables. Our case contains two state
variables x1=nl and x2= pg, and one control variable u= pa,
where x2=u since pg= pa for all t� �t0 , tf� �no time delay�.
For this case, the minimization leads to the following ne-
cessary conditions for the solution of the optimal control
problem:
�a� the boundary conditions on the state vector,

�„x1
��t0�,u��t0�,t0,x1

��tf�,u��tf�,tf… = 0, �B7�

�b� the boundary conditions on the costate vector �̄
= ��1 ,�2�,

��1
��T�t0� = � ���

�x1�t0��
T

+ ����T ���

�x1�t0�
,

��2
��T�t0� = � ���

�u�t0��
T

+ ����T ���

�u�t0�
,

��1
��T�tf� = − � ���

�x1�tf�
�T

− ����T ���

�x1�tf�
,

��2
��T�tf� = − � ���

�u�tf�
�T

− ����T ���

�u�tf�
, �B8�

�c� the conditions on the Hamiltonian,

Ht0
� = −

���

�t0
− ����T���

�t0
, Htf

� =
���

�tf
+ ����T���

�tf
,

�B9�

�d� the system dynamic constraint imposed on the problem,

ẋ1
� =

�H�

��1
, ẋ2

� = u̇� =
�H�

��2
, �B10�

�e� the time evolution of the adjoint vector �̄,

�̇1
� = −

�H�

�x1
, �̇2

� =
d

dt
� �H�

�u̇
� −

�H�

�u
, �B11�

and �f� the so-called input stationary function,

�H�

�v
= 0, �B12�

with H�=H�x1
� ,v� ,u� , u̇� ,�1

� ,�2
� , t�.
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